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AN ANALYTICAL TREAIKET of the PROBLD4 of TRIANGULATION

by STFEOPHOTOGRAMMETRY

ABSTRACT

An analytical solution for the basic problem of triangulation by stereo-
photogra metry is derived. The most general case is defined as .the problem of
determining similtaneously the orientations of the two cameras, whereby all 18
unknown parameters of the orientation are considered with no limitations on the
camera orientations. The process of triangulation is treated as the computation
of spat.ial coordinates as functions of the elements of orientation and the
corresponding plate measurements. The least squares solution derived is based
on rigorous mathematical expressions which connect the plate measurements with
the unknown parameters. In contrast to the conventional approach, the separation
of the orientation problem into the two phases of relative and absolute orienta-
tion is avoided. This analytical solution can be based on a few basic theorems

of solid analytical geometry. Because the observation method - monocular or
stereoscopic - does not influence the formulas expressing the "fgorous geomet__t

it is possible to make use of absolute control points vhich are not common to
the area covered by the two photographs under consideration. Thus more favorable
geometry is introduced into the problem of the double-point intersection in space.

7-he least squares solution derived is suitable for any number and any com-
bination of absolute, partially absolute arnd relative control points. In addition,

any one of the elements of orientation - iucluding the base line components - may

be enforced in the solution. By applying t•he concept of pseudo-residuals and by

Introducing cross-weights, it is possiblc to treat the Ieast squares solution
like a problem involving independent indiiect measurements. Furthermore, A.. is

shown that the normal equation system can be formed step by step. This method has

merit -'hen electronic computers are used since the number of points carried in

the solution has only a slight effect on the amount of memory space needed.

The introduction of rotational auxiliaries which are essentially Airection

cosines and the combination of these with the plate coordinates as linear
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auxiliaries render the coefficients of the observational equations c•' pfrtial
differential quotients in terms attractive for an analytical trea t. The
process of triangulation is treated as a part of the process of orientation as
well as an independent compux.'ational procedure.

A special chapter deals with the determination of the mean errors of the
observations, of the elements of orientation, and of the triangulation results.

Finally, the application of the proposed analytical method to the problem
of control extension is discussed in principle. It is shown that the melhod used
on the universal plotters for a strip triangulation procedure is an approximate
solution only, because it is based on incomplete conditional equations.

The rigorous geometry for the problem of extension is interpreted Ps the
condition that rays originating from three consecutive camera stations have to
intersect for at least one point located in the area common to the thret photo-
graphs under consideration. The corresponding conditional equations are derived
and the coefficients of the corresponding observational equations are given. It
is shown that it is now possible to include in the extension~models which are
formed by the combination of photographs taken at every other camera position.

-The thus extended base line provides for a favorable base-height ratio other•iAe
obtainable only by convergent photography.

As stated before, the final normal equation system can-be formed step by
step. Attention is called to the fact that the matrix of the unknown parameters
is filled in the neighborhood of the diagonal only, thus makin it 1,,dsible to
use an iterative subroutine.

The method presented for a strip triangulation is useful in a least squares
treatment of a block triangulation also.



I. INTRODUCTION

Photogrammetry may Le defined as the science in which geor.mtrical properties
of objects are analyzed in quantitative terms from their ima6es recorded on
photographs. Stereophotograsmmetry, in particular, deals with the triangulation
of pencils of rays originating from two camera stations by applying the technique
of stereoscopic observation.

The process of triangulating two corresponding jencils' of rays consists of
the restitution of the orientation of the two photog=phs under cansideration.
and the reconstruction of the model. The analytical equivalent of the restitution
of the orientation is the determination of two sets of nine degrees of freedom,
namely, six translations and three rotations for each of the two camera stations.
Exprev,.d analytically, the reconstruction of the model is the process of tri-
angulatang individual points whereby each triangulation is based on the 18 ele-
ments of orientation and four corresponding plate measurements.

Approaching the problem analytically, for the general case the 18 elements
of orientation are obtained frow a least squares adjustment based on a sufficient
number of conditions of intersection (relative orientation) and on independently
established control points (absolute orientation). Thus the general photogram-
metric problem is essentially an interpolation procedure by which Eystematic
errors may be eliminated and the propagation of residual errors in the final
triangulation procedure decreased. Depending upon the arrangement of the triangu-
lating penicils of rays (normal case or cblique case) and upon the type of photo-
grammetric instrumentation used (aerial cameras or phototheodolites), the number
of independenitly given orientation elements will vary. However, this fact does
not eliminate the basic necessity of computing the reraining orientation elements
by a least squares adjustment as stated above. Thus, it appears to be unnecessary
to distinguish between different types of photogramnetry because the methods of
stereophotogrammetry applied to all measuring problems, e.g., in geodetic and
industrial work, are based on essentially the same geometrical and physical prin-
ciples.

A general theory for the error propagation deals with the mean error of an
observation of unit weight, with the errors of the elements of orientation and
their propagation into the mean errors of the spatial :oordinates of the model.

II. GENERAL RE24ARKS

The concept of measuring should always n the principle of overdeter-
mination. Therefore, a final determination of the ;-nmown parameters should be the
result of an adjustment. The significance of such an answer is determined by the
computed estimates of the precision. In general, it is possible to obtain approxi-
mate values for the unknown parameters without difficulty. Consequently, in the
process of adjastment, corrections to the approximate values must be computed to
render the final result. The process of a rigorous adjustment requires that the
weighted sum of the squares of the residuals of the original measurements be a min-
Lmum. If the measuring errors are normally distributed, the result represents the
most probable values for the unknown parameters. The precision of the result is
computed from the weight coefficients obtained from the adjustment and the mean er-
ror of unit weight, which may be either independenatly determined or computed from
the sum of the squares of the residuals. The specific least squares adjustment is
given by rigorous rmthamatical expressions which connect the original measurements



.iith the unhnomrn parameters. If these functions are not linear, it is convenient to
linearize them by applyirg the Taylor series, neglecting second Can higher order
tornm.. In auch cases it may be necessary to compute a series of corrections by an
iterative process in order to achieve a desired accuracy in the final -result.

In an analytical treatment of any triangulation problem - including photo-
granmetric problems - the above mentioned procedure must be considered as a part
of a least squares adjustment.

Before analyzing our problem in detail, let us state the objective. The sole
purpose in topographic photogra metry, and in numerous non-topbgraphlc applications
of photogrammetric measuring methods, is the reconstruction of the object photo-
graphed. In accordance with such an objective the efforts in research and practi-
cal application ar. often limited to problems of production and quality of the
stereoscopic model and of its evaluation. In such cases,, a limited amount of empha-
sis is put on the geometry and the physical conditions existing during the process
of taking the photographs. In various non-topographic applications, however, photo-
graphs are taken either to calibrate certain physical parameters of the cameras
themselves or to determine absolute values of the orientation elements 1 . Typical
examples are: a) the determination of position and attitude of an airborne camera
from photographed ground control points for the purpose of trajectory ietermina-
tion of airplanes or j' ided misele!2 and b) the calibration and orientation of
photographs taken with ground based cameras for the purpose of providing a refer-
ence datum, where such cameras are. mounted rigidly in relation to other measuring
equipment. In addition, a rigorous mathematical treatment of the p'oblerm of tri-
angulation is necessary for a study of the propagation of random and systematic
errors in both single models and extensions.

In general, an approximate solution, though useful for a specific case, will
rnot necessarily be adaptable to other cases. However, a general and rigorous ana-
lytical treatment of the simultaneous orientation of two photogranmmetric cameras
will be applicable to any measuring method based on the stereophotogrammetric
principle. Approximate solutions which may be desirable for economic reasons in
special cases can be derived from a general solution by introducing certain
assumptions peculiar to such cases. Therefore an analytical treatment should be
sufficiently general as to the least squares procedure and the code for electronic
computers to permit the use of the method for a wide range of stereophotOgrammetric
measuring problems.

III. THE GECHETRICAL ANALYSIS

In making a rigorous geometrical analysis of the simultaneous orientation of
two photogrammetric cameras, we shall first consider the method of deriving the
orientation used in any optical-mechanical stereoscopic restitution instrument.
The spatial position and orientation of a camera with known optical characteristics
are defined by six parameters, namely, three translations and three rotations.
Consequently, for the two cameras under consideration we are dealing with 12 un-
known parameters.

Twro bundles of projective rays can be oriented with respect to each other

1 cf. [81. (References at the end of the paper)
2 cf. [9 .



from n•asurements made on the photographs without reference to absolute control
data. Five pairs of corresponding rays are necessary and sufficient to establish
this relative orientation which is equivalent to the construction. of a true model
of the object photographed by the two cameras. In the process-of del-rmining the
remaining seven unknowns we mUst find the scale and the absolute orientation of
the model. The latter establishes the model with respect to a given control
system by three additional rotations and translations which are equivalent to a
coordinate transformation.

The separation of the orientation problem into the twoifundamental processes
of relative and absolute orientation has been predominant in practical photo-
grammetry and, consequently, has greatly influenced the related error theory.
The separation of the two processes of orientation has been strictly based upon the
practical methods of restitution. From the standpoint of both practice and error
theory, this separation has its disadvantages. The model obtained from the
relative orientation - even if it were flawless - is of interest in very
special cases only. The relative model usually has to be transformed into an
absolute one. During this process absolute control in excess is often used to
improve the preliminary relative orientation (compensation for model deforznations)
as well as to wnimize the influence of existing tensions within the given
control. In any case the absolute control must be considered to be of greater
inportance than the relative information.

In an analytical treatment the absolute orientations of the two projective
bundles of rays under consideration are functions of the positions of photographed
images on the plates. This conception automatically includes the relative as

well as the absolute orientation of the model. In addition, the sum of the
squares of the weighted residuals of the original coordinate measurements on the
photographs must be minimized. Therefore, the orientation problem may be expressed
by form-1las explicit in terms of the measured plate coordinates and preferably
so arranged that a minimum number of measurements and residuals appears in each
of the observational equations.

It is of further interest to note that in an analytical treatment the method
of observation - monocular or stereoscopic - does not influence the formulas
,-xpressing the rigorous geometry. in other words, monocularly and/or stereoscopical-
ly observed coordinates may be introduced into the coirputation so long as the
condition is satisfied that the sum of the squares of the weighted residuals of the
original measurements is minimized, ConsequentiyK an analytical method may use
absolute control data outside the field common to both photographs. Thus an
extended basal area is obtained for the do~ule point resection in spacep a fact
which will make it possible to use the favorable geometry which is characteristic
of the single spatial resection-'.

In order to obtain a general solution for our problem, the least squares
adjustment must be suitable for all nunbers and types of reference points and
their corresponding plate measurements - provided that the informatioil is
sufficient for a unique solution and satisfies the principle of the relative
orientation. The three types of reference points are: 1) absolute control
points given by their spatial coordinatas., 2) partially absolute control points
given either by their Z coordinates or by their X and Y coordinates, and 3)
relative control points. Points of the first type are rot necessarily restricted
to the area coimmon to both photographs but the two latter types of points must
lie within this area.

3 e [9 7
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The b•si c geomitry necessary to meet the above mentioned requirements is
siimple. Assmning a unique solution, we see from FAgure 1 that the cont•lion for,
correct orient.ti6& •r1th respect to an absolute c~ntrol Point R,• iven by X. Yx Z,
is equivalent to the condition that the center of wprojection ), the ige point r
anA the control point R are collinear. In caie the absolute control point is located
within the area cocon to both photographb, the condition of collineakity is valid
for both th. left and right photographs. In such a case, the condition of inter-
section of two corresponding rays - namely at point R - is automatically _atisrLt
The fact that the left and right cameras are fully independent in regard to the
condition of collinearity simplifies the least squares adjustment. Furthermore,
this fact is interesting fro the stanpoint .of error theory. A similar g etri-
cal condition may be obtained for relative control pointp. Also fro Figure 1 we.see that the condition that two corresponding ras intersect Is equivalent to the
condition h•at the two centers of projection 0' and 0", together with two core-
sponding image points r' and r", are coplanar. In deriving the necessary fomili.
we shall see that the two geometrical conditions mentioned above ae Adoquata for
the solution of ouw problem.

Trou ngure 1 we obtain:

"and R" -* tr"

where 1& and 1" se svale fkators. The prim and double prim indloes refer to
left and right stations, respectively.

Correspoodingly

x r; +' * V 0 I: + aw*
I * 1' * n &v' , 7 a

Z *Z' + a *
9 0

Z. "of Li triplcts of for•an (2) is the analyttoal oxprasslon for the aondition
that the points 0', r'. � ed 0", r", R, respoetively, Iti on straight lines. Be
cause the point R is a. , to both triplets, thwie lines satiefy in aeAltioa the
conditton of Intersection at the point R.

Fswra formula (2) follmos:

U1 Up a X - I - (x)

v4 -• -,re Y - .O a (Y) (3)

of W" - -Z - Z a (Z)

Froma Fi&ngre 2 we road

S-u * .1 k) - lei)

i(X * J(r) - k(Z)



'Nf

10



Further we obtain~ rk -can by formulas (1) 1&~ k ando therefores"

With U1e transformation matriz of the two veator tripleti-

k

and fros formulas (4), we obtain

M, x sin a con 0-# (Y) an a,. (z) cos a cove(6

X ino...! in. ....006 6

and

U - Cos a i 'ast ein to a # U a coo6

v oo.. w ine (7) "

v * . o .±.n - G ain *. a. Gas Goo

In fozmla (7) we hew from Figub 3

is .(x. - ) *se. . ( y) i.(

VO now Irtri'ooe auxiliafoes which are used thrigbhot the epart.

L 0-004 a ooe. + siinaa 0 sin A 2 - - aoo s uin, - sin a filn a Ga* t

B1 0 -2 0 00" e .

n C C 0 e o9maina@1L v .. .... .auIaa

DI - sn a c os w D 2 sinn a sina

* -a, id n• Z2 * . (9)

1 -os a coe c F - coo a sineo

Sa sin a, 02 - coo a

HI "ir • mo -os co

11 i
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By substituting ()into (6).

-()).+ ( *F1+ ZF (.10)

&Md by irabatituting (8) into (7)j, uuing the epresuionis (9)

. u (~m - a~(yv-v)B2. R1(1

W (z (xp-)CI + (y yp~)C2 + *.

Substituting formula@ (10) amd (11) into (2) en~d (3)a ami using

ý%XadYwxn + (12)

wi have for the left "n right stationsi

(ZP(X'-%)CI +. (y'-y,)C4 o'F o1p

(Z-zO) [(zvmxW%)AI (ym-y%)AbI COerI

(xI*-Xo)Cl + (y'-YO)CI Io7

(Z - Z,) [ (xn-xt)BI + (y'-y)Bj *'j
Y - -__ __ __ __ __ ___ _+__ __ _ S

(xI-Ye)C + (y"-yI)CI +0071

(Z -ZO) + (Yo- -)81c"

pp

Oc(-xo)w * (Y-qA)Ei Z-!)i

Q . .'



/q1

and .(z.i ~.)i zz~!

whero

q11 (+- (xo,")3 + (fz,,)0,

A Pore detailed derivation of theeforulas (13) and (l4) my be found in [8 4

The coordinates of R Pay be on4y partially giveno either with its elevation
Z or with its l,4ation 1 ar-- Y -,We ,Pb4n from the three equalities iný
formula (2), in came Z in given

2.,u,,, - Z*,,,w, + b w,,. 4,W OWN - Z'v-, t b v,,,__ _._ _ 0 (33)
Zo 0 0

uOW - v'w - voI

and in ease I and Y are given

Xt.uNv, - X,.,w, - ,..,.,,
x a

YvP Tow" T0,*' - b vlv

In foimula@ (15) and (16) we have Introduced the base line ooaone'•t

b X11-lox 0

b TOO TO (17)
y 0 0

b "Z -Z'
Z 0 0

Formulas (15) are obtained by equalizing the X and Y coordinates of point R
from the left and right stations. Thus, for a given value of Z, the condition
of int.ersection of thi two corresponding rays is satisfied, Similarly, formlas
(16) are obtained by equalizing the Z coordinate of point R from the left and
right station. If we introduce ýhe given values for the X and T coordinates,
the .cor.i...u io of1 1! &g,-- n m-tisfied.' Each equation in formulas (15)
and (16) nay 'e written Rq a corritional ejuation. From formula (15) we obtain.



(z),,1.1, - #q)OWN bw Vw. . 0

and (1')
(Z)Wv'w, - (Z) 'v'fwl. b vTw A 0m

From forpias (16) we derives

(x)V.uwI - (x).u.w- bu'." U (19

(Y)tv*,w - (y)Mvtw ;. bayv'V" 0 0

Finally, we shall 'consider the case in whioh the absolute position'.of
point R is unknown and only the condition of intersection is given* From the
equality in formula (15) we obtains

b x(vw" - vev,) + by (uww, - Ww,).+ b (uv -- -U . 0 (20)

This equation my be dcrectly obtainod by a different approach. Th. condi-
tlon af Intawoeation for any two corr'eapondrin rays is satisfied if the two
rays lie in a plane (basal plane) with the basi line o0'ON (See Fnpre 1).
This onqdition is equivalent to the condition that the four points Os 01, r'
and rm are coplanar. The coplanarity of these four points in satisfied if
the detertimnnt forled by the spatial coordinates vanishes. With respot to
the (X), (Y), (Z) - systex we haves.

0 0 0 1

bx by bS 17 .0
U' V6  w' 1

bx + u" by v" b3 + wv 1

This deterxdnant is 'identical with the conditional equation (20). Fmila
(20) represents the b&slu iupresuion for the relative orientatico for the
general case. If both b and ba are equal to sero* e haves

r• Vw (21)

or from for.elas (12) ' /\

Sa T" (22)
For the case in which b. O, the elevations of the stations 2'. and ZO are

equal, and. conseluently (Z)I - (Z)1. This we may write (Y)' - (M), which is
the traditional presentation for t e condition of relative orientation as
given by v. Oruber. 6  The conditicn of equality for the (I) coordinates is
used in the pr•cn3, o relitivc orientajiur. of independent paira of photographs
in the optical-nmechanical restitution equipment. A6tAally, the observation
of any (Y) co3rdirAte makus it neces3ary to iLtr-rducs a cozrireponrding (Z)

on formula (22) wr.;:h 'ay be written 3s:

6 cf. [3 ;r. 27-
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ttan X (23)

"A) is tile fomtlalel• fcrrned by an arbitrarily chosen reference plane
corntaininC the base line and a seconJ plane containing the base linn and.
the corresponding target ray. Thus, W'13s the polar bearirg of L. Equation
(23) states that the two polar bearings of R as obtained from the left and
right stations u~st be equal, a requirement which is identical with the abQve
mentioned general condition that the two Corresponding rays, with the base
line liei in a plane. In this connoction, it may be mentioned that e.g. in
Finsterwoalderls 7 formula (10), given as the basic formula for the relative
orientations the first quotient equals thn X" and the second quotient equals
tan ILI, Thus, his formula repr.sents the special case of the relative
orientation as expressed by our Tormlas (Z )o

Sumu~rizing the results obtained so far, we see thato

a) Each absolute control point1 defined by its XsTZ coordinates, gives
rise to two independent equations for each nodal point position from which the
control point 3.s photographed. Thus, if the absolute control point lies in
the area common to both photographs, we obtain four Independent equatione
anv in addition satisfy the condition thmat tho two corr,-=por4, rays I•e Sraset

b) Each partially absolute control point, given by either Its I
coordinate or its X and Y coordinates, gives rise to two independent equations
which satisfy the condition of intorsection of two corresponding rays.
(Formulas (18) or (19), respectively).

o) Each relative control point gives rise to one independent equation
and represents the condition that two Corresponding rarO intarsect. (Fmmia

From the results given in (a) to (c) above we conclude that for a unique
solution It is necessary and sufficient to havse for examples for the
determidrtion of twelve unkrowns: a) two absolute control points which are
situated in the area eoimon to both photographs Civir4 rise to sight
equations and eatisfying two conditions of intersection; b)ý me partial7
absolute control point giving rise to two additional equations and increasing
the riuuber of enforced intersections to three; a) in addition two relative
control points increasing tho nurber of equations to-the neessar7 twelve an.
establishinlg the fourth and fifth interseotiono of corresponding pairs of rovo

These requirements are ideitical with those necessary and sufficient to
solve th, problem in the conventional way, w)Ach consists of divid~rq the
,r-- .0atii.n prAblum into the phases ot relative and absolute orientation a

stated at the beglnrdng of this chapter.

In applied aerial photogranrrtrf the difference in flying height between
two succe•bive photographs -- the base co,-qonezit b. - is often determined

independently , f Statoscupu rtig),i'atlon, rarl cxperierKce has shown that It is
so.etimrs deslrablc to crif;rm. l.l,- !-*asurrr•.•t in thc process oil orientation.
Aislytical y spcakir4, V er.. exists i,-. such a case an additiorAl coiditional

7 --

;. ,~ p. ,-
• " It. /i



,Bccause of the siiplicity of this formula it seems advisable to write
Z" - ZOOb (+ )

and substitute this expression into the formlasý(14)j (18)0 (19), ad (20).
Simularly, the same procedure may be follmoed foi' the bj aMd b COMPO ltU.

y y
The formulas introducing the unkowns b.0 b, and b are given belo.

C' [(x)"AJ + (1)'b . (O)Gc{]

c, [ (x),AI + (Y),Bn + (Z), * rl

where

q,., (x), * (+),M 1 + (z),wi

J[, I b1] Al -0 ((Y)' b1j BI + ((Z)' bj C11 3Ja

CIO {([<,, b-, ] A + ((C ), - b, B1 .[(Z) I -bý C11 .

Wher q" [(X) b) M, + [(,)'"+J] [by'] 'i

(Z)I(u*w, - u'w") - bauW I + bwvIv" - 0("

(Z)I(v~wt -"vfw'") - b v"wI #* b O'WN U 0

(X)'(u"vw - ulw") * bxuw'" - bsutu" - 0
(301)

() '(v"wl' - v'v") + bl.vw" - b viv o 0

Formla (20) irmawins unchmnued.

In order to enforce arn or all bass line components in the orientation
process the corresponding unknown parameter corrections need only to be
eliminated from the computation.

17
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IV. T~kii LEAST SQU0ARES ADJUSTIHM

A. The process of orientation

-1) The least 'squares solution

Formulas (14), (18), (19) and (20) express the functional relationship
votween tw vlaste &W,1 the 'given control data for the proccos of
orienting two photogrammetric cameras simultaneously4ý Consequently, thez •
formulas may be considered as tU basis for a rigorous least squares adjust-
ment. In formulas (18), (19) and (20) more than one observation is involved,
leading to more than one residual. Moreover these observations together •'
with the unknown parameters of the solution must satisfy certain conditions.
Therefore we must deal with the general problem of a least squares adjustbment
A complete treatment of this problem was first prepared by Helmerto.

The fore of the linearized conditional equations for. the -different types
of control points is shown in the observational equations (2). The actual
values of th0 coefficients will be dealt'with in a later chapter 9 .

Formlas (25) show that for absolute c(ýitrol points only one .observation
appears in each equation And no observation appears in more than one observa-
tional equation. Hence, the c?effTicient.. matrix of the residuals for these
equations is diagonal and, In tact, is equal to the unit matrix. F"t•herores
tho conditional equations for each station have only ,those coefficients which
correspond to the elements of orientation of their respective stations*. A
already mentioned on page 10, for a case in whiob no npartially absolute,,and no
relative control points are present# the stereo-orientation will reduce to"

two independent camera orientations.

In the equations arising from partially absolute cont rol points, four
obsorvations appear in each equation. However, the same observations appear
in ohV two equatlonse The coefficient matrix of the residuals Is thý;eforv
a diagonally are"d sequence of non-overlapping 2x14 submatrices

Finally# in ths equations arising from relative control points, four'
observations appear in each equation and none of these appears in any other
equation. Thus, the coefficient matrix of the residuals is a diagonally
arranged sequence of non-overlapping lx4 submatrices.

For the partially absolute "nd relatire control points the elements of
orientation for both stations appear in the corresponding conditional
equations and, consequently, the coefficient matrix of the parameters is.
filled.

C cf. '5 pp. 215 -222

9cf. pp. 29 34"
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AsaumLdm the observations to be independent and normaLl distributed, the
most probable values are obtained V minimliaWVn V wphee P do e the
weight matrix

p1  0, . , 0

0 P2 " " 0

P- (28)

0 0

whom the pOs are the weights of the ebrvativ *)) The troduction of weight-
IN factors, my become. necessary to exress vag.ous degeese of preoislon with
which the original observations have been obtai•ned du to the method of mwasur
or dus to a varying image quality caused .sg., by loss o defInti touards.

the *it,% of *he photograph. In case the obsorvationm`,all have the mans
weights, it is convenient to consider P as the unit matrix.

A direct solution of our problem is obtained, a W e las shemn, br
minium-•n• tbe follouing function:

vV P-2 kT ( AvS - ) (29)

where k denotes a vector of unknmm Lagrange multipliers or orsrelates.

1setti each of the dif ferential quotients for vl' V2 0e****ey 3 1  Al, &2#
•.. eqwa to sero, we obtut (n + u) equation whc*t~o gehe iel. theprsviZsr imentioned r conditiom3. equations (forma" (26), are nmoe*r#7 and

sufficient for the det rmination of the n residuals (v) the u unnmwn
parmter corrections (&)'and the r correlatem (k). 4b; differentiation,
for v1 , v2* "" Uv e I

Pv - ak- 0 or v- p'A (30)
The differentiation for 2'""" A i ves

ilk- o (31)

Substituting formuas (30) Into (27) and using formilas (31), we obtain the
(r t )normal aquations:

AP'- A0k4SA-L-o
(32)

Because the sejuare matrix APlAT I.s non-singular in our problemp we mAy
solve for k In tr.m ofA

k- ( AP-1 )-T(BA.-L ) (33)



Substitutirig (33) into (31) we' obtain the final system I4 WA~aL equations for

-the paraibeter correctionsa.

e(A P'1 A') a1] A B(AP!1 A' w u0 l)

The meam error of an observation of unit weight is

The feasibility of this solution depends upon the fact that the r z r %atriz,,

AP 1A s in essentiaJ214 diagonal,

"if the A matrix can be'partitioned into diagonally arranged A sub

matrices, an indicated for our problem with forugas (26), it can be' smiu that
the equation (~34) may be written as

Il [VT(AP-1lAt -u?' [.T (A:P 1 AT JL] 0 (36)

whe re the index I. refers to the elements of the I groape Tim. it in obviousl
that for conmptational convenience the final set of normal equati. oen may be
obtained by adding separate sets of partial normal equations form. for eacha
of the five groups. TMhe .t of partial normal equations for the itf group Us,
accordirng to M3)

[t( A P 1'A' )135],A [iT( A P-lAr. )-lL I. _ 0 (

In aralogy, it is possible to subpartition the .atrides in (37) into units
corresponding to the indtividual condition equations :for i7' specific groups
provided the submatrix A I is diagonal.9 Then the set of partial bormal
equaatiora (37) may be written as

9T( A P T )-le]~A S (A lT)~L 0. (38)

th thwhere the Index 3 refers-to the elements of the jt line in the I. group.
Formula (38) show* that 'a feat of parttial nozzwial 6ejuati~orss 'Lors a qpecific group
(formulas (37)) can be subpartitioned iinto as many sub-sets of partial nlormal
equations as the cor.*esponding A I. matri!ý can be suboirtitioned into diagonal3y

arringed A i sizbmatrices, Therefore the formation of the final normal
equation system. can be accomiplished by adding step by step the partial normal
equhtkonis computed for each of the 'subgroups, There is an advantage in usingl
this p\ýooedure on electronic conputars, because the amount of memory spaceu
neededL is almost indewpendent of thembter of. points carried in the, Solution.

In ord~er to conclude our investigation a study shall now be..made of the
characteristics of the partial normal equati~ons for each of the smallest
possible subdivisions within the Ifive groups of observational. equations as
given by forinulas (26). As menti onetti above Lhe rratricesAi and Az are

____ ____ ___ ____ ___22



unit matrices. Therefore, for both groups for each Individial conditional
equation we have

(A3  AT) *p (39)

Siod1arly U* group 5the. A~ 5mtrix 'sa &d&IagoalW amugd sequeSe" of
,n...overlappir .I vmubtri±cs. Therefore, ve have for eaoh Iri.idual
conditional equation In this group

( Aj P'- AT rl)4"1- .... {).(tC.

Finally, we nost consider growps 3 an 14 which are forwd analqogotlely istead
of asuociaixzg a cut of partial normal equation .vith e'ch Lr.vI •1 0bvsry-
tional equation as is poeuible in groups l 2 and uj s b a set mnt be
associated with a pair at observatimAl equationm beoause the A matrioes for
both groupe 3 and are diagonally arr*n4ed aqnes of wo;ot2;;j; 24..
submatisices. For the jtb pair of cbservational equationss fog* Invap' 3A,
we hame:

A 33 (b) 3(b) 2 (

end consequently ~i

,~ At3 1 (()(aj [(a)(b)]

adtting the derivation and using the notation of formal'& (25), the following
set of partial noml equations can be forand for each pair of oor spooding
observational equations in groups 3 and 4j rvnPvaotv*ly

23
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The weighting factors (g) 1 , (g) n are

and1 analogousl~y (g) 1

(a)
(g) 2 " (-g4 4)

(').,"(',., lb' ))
"aIa

(a I aJb_
where K3  - P Z(a() 4b() z P

_or iI

'a 1K ZL , / -"xz: ,

From (142) it is obWious that this sot of partial normal equations'
mya be further partitioned by forang sets of partial normal .quatignw
vhicI incorporate only the ftrs- or a o*a tei s of eaoh of the coeMfownta.

For an analytical treatment the eocoq' of the least squares solution'
is an imortant factoikp Therefore the infoimtion so far obtained 1 .
sunwiled and the leat equareIs solution for the process of orientation
is arranged'in the following way. By 1ktroduing vreo-roaid we
my -denote in

group

Sland2

3 ardl4 Xv (46)

AV*



The observational equations'(26) may now be written as' follows

grouip weighting factor*

2, )2 822 L2  P

3 33 A L L3  (9) amd4) (47?)

In termu of formulas (25) the observational equations are shown-on the next
Page*

The pbeudo-residuais (('X)p and Oý.} ) are'linear oolm)intions of ýthe'
original residuials v '(formwlas (146) ).ý They, have been
introduced solely for the purpose of simplifying the computational prooedure*
The system ( 48) resemb*les a set of observational equations for independent
indirect measurements. In the last column the corresponding weighting factors
are recorded. As the first stop in~ the pr~oess of foritng.-the normal equations
a set of part~ial normal equations is coomputed for anf r observational equatiion
according to

6T S'P S)i (Bye L )1 0 (149)

denotes the diagonally arranged weighting factors, where (gl (g)20 (SI
(gyand (jare formed by folrimlas (140) and .(45). The index J. denotes the

elements ~f the I t line,

Now It i's necessary only to take into Abcount the fact that in groups 3
and I4 the pseudo-kesidual.a (k) by 1;adru are linear combinations of the original
residuals. Dlanoti'n'g the numaber of pairs of such equations included in the r
observational equations by a. another set of partial normal equations may be
formed according to

B"'ij Oi Bji) kA t ( ~ji P ii L ij) k a0()
k-1

where, - (g)ij deriotes the cross Weighting faotor for a pair .Of..
ý-rmvtondinr' observational equations. The subimatrices 13.,and aare'the

matrices of the coefficients of the unknown paramieters in the pair ofý observa-.

26
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tional equaLions uider consideration. The two rows of these matrices are
arranged according to the ij or ji sequeinceof the lines i and J3 respectively.

The conformity or the two sets of partial norswul equationr (49) and (.o)
contriiutes hivrkedly to the econoir of the numerical solution. The final
system of normal equations is thi algebraic num of the two sets of partial
normal equations and may be symbolized by

ST PB&-ffPL-u (51)

By introducing fTP 8'- N (52)

we obtain QOPL(53)

N 1 is the matrix of the weight coefficients of the parameters. The mean
error of an observation of unit weight is conputed from (35), where the
numerator is obtained during the reduction of the normal equations. The
modernized Oaussian algorithm1 1 is suggested for this procedure. The individual
v's for the absolute control points are then computed directly from the first
two groups of the observational equations (48) by foriauas (46) as

(514)
From the third, fourth and fifth groups of equations (48), the (0) aAd

values are obtained. The individual v's are then computed by formalas (30),
(33) and (47). Thus w, obtain for a partial control point, in the case where
Z is given: (a)1 k" _"_

V & • ____ 2

"- (9) 2 kl . (b) 2 k2

iA•ere k- - (•) 1 (g)1 , 'X•

.(a),kI + (b) 3 re2  (1X)
V#" 0 3 1 w )3 2( ý, I,.

M (a) 4 k. + (b) 4 k2 ,, k 2 - ())2(9)2 ())3g1 02 (

7 P

and in the case where X and Y are given:

II (aX):•k:•, (,a)lk 2

(a) 3 k, .+ (ay.)3 k2  w hre Ic -I ()OX(g)X +M. )(g)*
x P* (56)

(ax)14 k, + (ay)02k k2  . (-))(g)y + (X)X(g)xy

cf.2

28



Finally., for relative control points we obtains

vu 1 k

During the computations the usual checks a:e ,iadei

[[B ., jpv]a&, etc. (58) andvP v [LL *u] 0)

where t' u~is obtained during the process of reducing the normal equations.

The final check is obtained by ping the final orientation elements andformulas (14), (18) or (19) and (20), where eitkr the' adjusted observations
(1 + v) and OL I v'S nast check (formulas (1)) of where, by introducing the
corresponding adjusted observations together with the final ialuea for the
unknowns, the corresponding conditional equations mnst be satisfied (formulas
(18), (19)p (20)),

The mean errors of the unknown parameters are computed by multiplying the
mean error of unit weight, which can be obtained from formula (35), by the
square root of tfi4 corresponding weight coomcient which is obtained from

'? the matrix of the weight coefficients N"1 .4

If formulas ( 1 ),( 1 8 a)s (1 9 a)-and (20) are used as the basis for. a-
least (quares treatmentp the arrangement* of the sero-e3lements in the matrix
of the coefficients of the observational equations is changed. The correspond.
ing system of observational equations is shown on the following page. (formulas (WI).

SThe increase in zero elements in the third, fourth and fifth groups of the
observational equations in formulas (48a) in comparison to (4 8 ) is desirable
since the presence of weighting factors causes the computation bothe
coefficients of the normal equations in these three groups to be more complicated
than that for the first two groups. Moreover, the relative control points are
usually more numerous than the absolute control points. Therefore, the system
( 48a) provides a more econo$cS 'solution, The main advantage of formulas (48a),
however, is that any independently obtained base line component may be introduced
in the computations simply by eliminating the corresponding 4b from the least
squares computation.

2) The derivation of the coefficients of the observational equations

The setting up of the observational equations (48) or (48a) riquires
compi ting the, coefficients of the matrices of the unknown parameter corrmctions
and of the residuals. In addition, the absolute terms and the weights must

cfo. Chapter C p. 38
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In ca- the base" line components are introduced as unknowns, the coefficients
'w the system of formulas (48a) are the qaV for form-las (14&) as for formulas

(14) except that the arrangement has beenamewhat changed. For formulas
( 1 8a), (19a) and (20), however, a few coofficient changes occur:

for formulas (18 ) for formalas (19a) for formalas (20)

(D)I• (D)' - (D t)- •

(E)2 (66) (Y). .1 (67) "(68)

(F) 2 - -1 (F) 1r- •

,The absolute terms ae computed with

"4 Ix 3 .(X ]v

" ) "- -(I.(z), ÷ L.i] v,) (69)
"• II.(Z), + [2] u,

-( •)yU -tz-(r-)' * 1:_] ',).(a) -I(~ (2]= U1I

The weighting factors art computed with fomulas (40) and (45).

Formial (20) expresses the general case of the relative orlentation. It
may be of interest to consider the coefficients when conditions valid for the
normal case are introduced. With a a 1800, a a 00 and 3(- 00. we have from
formalas (9) and (11) 1

A ".1 A 2 -a and U a (X - XP)
-~ 0 0a". 0 B 2. +1 v a (y-ý ,p)

C - 0 C" .0 v- -c

D 0 D2  0

R1, 0 E2 +1

0 * 0 02 l I
F1 0 a I 2 - O

H 1 - 0 2 "+1
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und froa forvia.lav (60) and (8):t
.0 o -y .-- (x- z)

to

The auxiliaries given with foumulas (61) are, with by - b1 -,Op Xp -p 0O
c, ao and bx uni•.s

I . o(y - y,) [i) .0 o &] - o

.i. -- o¢- - ,y) - (,3 a -- r 6] a y

Thus$ the coefficients (given in formulas (65)) necessar7 to form th oorreepond-
ing obm•lvtironal equation &aet

[(Aj a y"x' ( u) -- •x"
[B3 M -(Gi 'y'y) [K) (C2. * ,,) .- [B)

0 (Q) " 1 " 3 0
+[ I") (", (a '

aniJ the corresponding observational equation is, using the last line of forzmtA
(25) and (48a), and formulas (69)t

o(V* VI)amyox &W + (a 2 +*y)IYU)As. OX IC.
y y-

.+Y'x" Go," - (02 +, y'y") am" + ox" a.? - o(Y" -y) (70)

Introduoing y" - - py and VA V V- V we have since yt y"

7 y
V , S, teal 0o . y, a rm, , •1 - C, + )., - ( .)-
p ) - .pc (1

ThIs equation is identical e.g. with R. Finsterwalder's formula (13)13 for the
observational equation in approximately normal photograptq.

13
cG.•[) pp. 154, 155.
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D. Th3 prcx-ess of triangulation

1) The triangulation as part of the process of orientation.,

Like any other triangulation procedure, the stereophotogrammetric measurirg
.,-tbod is mainly a means of determining the coordinates of certain target potits
by intersecting corresponding ray.4. As distinguished from intersection photo-
grammetry, stereophotogrammotry does not necessarily separate the orientation
prnnAdure from the triangulation phase. In fact during the simultaneous
orientation of t~to camera positions a sufficient number or the target point*
to be determined are included as relative co)ntrol points in the ?rocess of
orientation Wn order to improve the over-all accuracy. The inclusion is based on
the fact that any two rays which created the images on the respective plates
originated from a common point and, consequently,, must intersect again after the
ortentation is restored. Thus, by increasing the angular field of the lens the
internal accuracy of the nri.entation is increased and, equally important, the
presence and physical nature of systematic errors may be determined. The
residuals of the plate meaiurmenlu awe obtained during the lcast squares
adjustment for all relative control points which were included in the orienta-
tion procedure and, thus, the adjusted observations x a I * v and l y vx X y,
are available for,,both stations. During the final check of the least squares
adjustment for the orientation procedure, the corresponding u, v, w values for
both stations must be coquted in order to check the conditional equation (20).
These values can be used in order to obtain the corresponding X#TZ coordinates
directly from formulas (15) and (16). By means of the auxiliaries from (61)
we have:

Z . Z•, - U=Z - w' - - w' (72)-•;
o ~(72) .

or Z * Z, * * m Z 4 "

From formulas (72)..and formulas (2) we obtain

and . f.
In order to obtain the more exact numerical answer, the computation of the
scaling factors 1' and 10 should be done with auxiliaries which do not vanIsh.
Assuminx coventional geometry, the use of the auxiliaries L2], [q., and II is
therefore suggested. From formulas (2) we. now have:

X 1- X+ POu' -X" + ,"

+ JOY1  Y" + , (74)

Z Z, &W Z" +
o 0

wher* 7--Z ', ' • A'w' Z" •-4,



The computation ot the man errors of the final coordinates will be

discussed in a separate chapter*

2) The triangulation as an independent computational procedure.'

Occasionaiy,, during the process of orientation, it is not debirable to
carry as relative control points all the points whose coordinates are to be
determined. For those points not included in the process of orientation, an
independent coordinate determination in necessary. The positios of the con.o-
sponding rays are determined by the elements of orientation as obtained from a
least squares adjustment and the four masured plate ooordinates. it is
obvious that, because of unavoidable measuring errors, these rays wnll not
intersect.. They must.be made to intersect so that the sua of the squares of
the corrections to be applied to the original plate measurements Is a 4nrA=.
Such a least squares adjustment of conditioned observations my be based on
formulas (20). Since there is only one conditional equation present, we have
only one" normal equation which is used to determine the correlate k. Then the
residuals are easily computed according to formulas (57).. The final cheok is.
obtained byý introducing the adjusted obsrvations into the origihml condi"Monsl
equation (20)M From here the procedure of computing the final XY,Z oonrdinates.
by formulas i(71) follows the steps outlined in the preceding paragraph.

The conditional equation for the triangulation adjustment is, using
formulas (25), (61), (65) and (69)e

and the corresponding normal equation is

Nku•- (76)
or A

where N (78)

As in formulas (57) the readluals aret

,I k
rx[''I.v, [}2 "( , 79)

We have the checks

VTpv- + k (80)

The computation of the mean errors of the final coordinates will be
"discussed in the next chapter.
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C. The duterminrtion cf the me-n.-e-r1orts of the observations, of the elements
of orientation and of the triangulation results.

The mean error of an observation of unýit weight denoted by a 18 oomuted
from foroulas, (35)

vTP V may be obtained direotly from the reduction of the normal equations
accordirrg to. formula (59) or by 'adding the squares of the individual weighted
v values. Thus the m"AiA error of an observation I bcforo djuutnt 1;

a1-. Sometimes 'the comput Iations of m directly from the original

msasurenents e*ge, usi g the differences of multiple observations, may lead
to a value of groatew physloal ugnl.fiaanoe, The discrepancies between the
m values comuted by the dOfferent methods provide means to investigate the
presence of s ystematio -errors.

The inverse of the matrix of the coefficients in the final norml equation
system (52) is the matrix of the weighting factors The diagonal elements
are the squares of the weighting fawtors of. the corresponding unknown para-
meters. Maltiplyin these weighting factors by a"gives the correspo;.ding
mean errors,*

Often it will b. of 1vterest to know the man error of a functon of the
unknown parameters,14 We may consider the function

F(.tIS,0 1 *,.7 t; , 6% , o.~ 742) a 0 (1
.p p

In case the function is not Ulnear, we apply the Taylor series. This gives
F a fo a1 lo•'° 0 e The f1 values are thus the partial differential

quotients of F with respect to the unknown parameters. If we introduce the

veotor

(f1 • 28 .fT (82)

the weight of the fuh'ction F denoted by PFO together with formla (52),.. is

P, f'N f (83)

The mean error of F denoted by mn, is thus

A : -- if (8)
", .q

By applying the above procedure, we may determine the mean error of any
function of the :orientation elements. For example, for bx the function F
is

F - X" - Xt()
-, C

of* 16) pp. 99 -10JO
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and, according to formula (81), we 9btain with the .sequence used in formulas (OR)

f u-1

f3.3 .1 All other f. ' values ar se$or

The weight *b and the man error acnw omputed by formulas (83) MAn
(84), respectively. If the base line comonents b., by zxl b have beeu

considered as unknown paramtere (of. forwlas (h4) )a) the trm a"bx

and are obtaird ,ddirectly from the cozrzsponding diaonl trm of

b
the matrix of the w~ighting factors.

The sman errors of, the triangulat•qd , Y! 2 coordinates are denoted by
mý and uo The procedure of computing these mean eo depends upon

whether the pointzias inoluded in the least squares adjustment of the orienta..
tion pmoess as a relative control point (see B/1) or whether the point was
afterwards determined b) a least squaroo adjustent based on four independent
plate measurements together with the independently computed elaemnts ot f
orientation (see (B/2). .The latter case may be treated by analogy .tu the already
discusAed problem of determining the man error of a funotion of the unknown
parameters. After the adjustment by formulas (75-79) eaoh' of the spatial
coordinates 1, Yc, Z my be expressed by forula (74) as a function F of the
elements of orientation and four independently adjusted plate measuzemmnts.
Denoting the partial differential quotients with respect to the elements, of
orientation and the plate measurements by.. f f.. and F F3 and\

Sre spe et~ive we m y introduce the vect 18 . .. ...le 73 "

F-(flf2 too** f8)

and P~E(87)
an F%.FI

The propagation of the errors of the elements of orientation into the
function F is' with (84)

• ~~~- u. e f (8

The propasatim of the error of the 4ndoependently adjusted plate :_-a=urmcntz
is

((F)
s(p)-a 0 ) 1j91

where my be obtained in the usual way'during the xeduction-of the

corresponalrt normal equation* Since the orientation parameters are not-
correlated to the plate measurements.used in the triangulation phase, the
combined mean er'or of F is computed by the Gaussian law of propavatl n

u m (90)
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In approimate~ly normal photograptV -'-he influence of 'the elements of
interior orientation on the deltermination of 1I, Yp Z can be neglected
because in 'such cases -the eleMents .of exterior orientation coupns~ts for.
the effect of the errors of the elements of interior orientation. 15
However,, the accuracy of the elements of interior orientation is iipR~ta
in interpreting the. mean errors of the elements of exterior oriontation.Jb

If the- point to be triangulated is included as a relative control point
it the process of ortentationai we Tqiint dta~trmine the mean error of a function
of thes =zknown parwmeters as well as jJthe adjuated observations,. This.
problem was tivated first by Hemrt'

For a deta.1ed presentation of this problem ~in matrix notation see L2]J

.It foflows that we may introduce the vector

FT . (5,s fop,..... fi, F, F2.~ 3 -F4) (

where the f arid-F values have the same meaning as in formza~s (87).

The mean error of the function F is now given by

n~ma~p~p -. (92)

where R denotes the covarianoe matrix ofrthe vecotr of the adjusted pam
and s the adjusted observations. The numerical treatment of-this

problem is quite oumbersomfe.

The anal.ytical method permits th. use of a large nutaber of rolativ and
Absolute control points. The matrix of the weighting coefficients Z(eg
formula (88)) decreases as the overdeterminAtion increases. "Thus Aith a
strong overdetermination the result obtained from formula (90) provides a
satisfactory approximation for the determination of the mwan wrors of the
triangulated coordinates, makindg- the utilization of formula '(92) annecehumary.

V.THE APPLICATION OF THE ANALYTICAL METHOD
TO THE PRO'BLEM OF CONYhOL EXTENSION~

The process of strip triangulation on the restitution inutzaments Is based.
upon the te~finique of orienting individual photographs So tk~at the orientation
of a pre--eding photeegrAph and the spatial position of At laksnt one point of
the preocdi,- model are en*'orved. This procedure, as well as the separation of

189
cf.@ DJ pl.21 2



ta



relative and absolute orientation in the restitution 'of an individual iAe1l,
is dictated by the physical properties of' the restitution equipment. The
enforoeirsnt of the -above.. mentioned parameters in an aerial triangulation lar
cowarable to a procedure which breaks up the least squares adjustmnt of a
triangulation net into a series of adjustments of individual configurations,
enforcing the re~ilt of one configuration, with respect to orientation and
scale, into the following ono. However, the application of such a procedure
does not meet the error theoretical requirements. In order to carry the
orientation and scale over a strip of overlapping photographs it is necessary
to satisfy the condition thaL rayd origirating •ron, three con~ccutive ca•era
stations intersect for at least one point located in the area common- to three
photographs., Analytically, such a poitt jives rise to three independent. condi-
tional equations. - If'we denote three consecutive photographs by (n-.), n, (nl),
an obvious method of setting up the three conditional equations is the triple
application of formula (20),whi.ch expresses the condition of intersection for
pairs of rays originating from the stations (n-1) and n, n and (n+l), (n1i) 'a
(n-l). However, this method does not lead t6 a result if the three rays are
located in or clome to a plane.. This situation is co6Mon in strip triangulation.
From 1igure 4 we see that three independent conditional equations can be
obtained by applying twice the above mentioned condition of, .interseotion
expressod by formula (20), e.g. for (n-i) and'n, and n and (n+l).

The condition that tnese two intermections occur at a common point is
equal to the condition that the- vector ý, is cooumon to the two loops

-" b0, Thus, with formulas (1) we

have the condition that qnjn in the first loop must equal the corresponding
expression in the second loop. Because the vector _n is identical in both

rn
loops, an independent conditional equation is. obtained by equalizin# the
scale factors % obtained from the two loops, Denoting the omonnits of

the first and second loops by the indices 1 and 2, respectively, we haves

(93)
Formlas (73) give for each scale factor A three quotients cori-respond-

ing to the projection of the vector I into the coordinate planes. If we
arrange the grqwd reference in such a way that the X-axis pointsapproximate-
ly in the direction of tVio trip, it is obvious that the terms involved "in the.
auxiliariesL2j , [5] and II, respectively, (f~rmnlas (61)) will always be
different from zero. Therefore we choose as the thdrd conditional. equation usi -
(93), (73) and (61)

"21 2111 [ 1.12 -0 ( .. .-

The coefficients of the corresponding observational equation are obtfiled- .

from formula (94) as the partial differential quotients with respect-to the
unknown parametern.

h2"-"""- ~~~~~~~~~~~~~~~l/...:,-:"".•:' . o.: :. -



1,01 introduce the following, avyxiliariais, which are aimilAr to those

devcloped In-forniilas (61)1

(Ulu* +wI') IV~vrnUu1

(b u' + b -t L VIUM) *ri

(b x " + b 5 w) - O6 (UV NVU)u L'

(b1:~ bml (u - v ID!v) -[23](ý

(b w~ - b Ulf) WN(I~ - vWIN.j) *[21

(bxk Cj.- b1Aj) * W2 'D) 23

(bc!'( -bsuý) C1 u*IP ~v"4). [283

(bJ 1 1 bApa 14(-CI- 2

(b CI -b5 AJ) M 1aUII IJ [7

Thus, if arranged in the somesmequence as in formulas (65), 'the' Coeff' dents
of the oarreeponding obuervational,,equation &rot

(B). 1 911"12 C23 217203,'

C11 3P 1 i 2 C 2].2 1 ~21x

1'. 2
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( .- M 1,v 2 + [2] 21"

(LK . + J] 2  2 2 1

-M (v'2l 1 + viII2 )

(N~a thphotogaph

(0 + * 33 1 + uin 2

1P '124 2 + PI 21j

(a•l, 4 • (5" - M 2 + [2]212 (96€), cou.,

[S) - ÷512. -6 [82•• .

1 2- + -x +

(U M, rn24t 9 M 2h

•w3 , (n.1) phot I ogt ph

5 [Z),- N11.1 3 .21I1

The Oorresponding value is oomputed f ro (92)

_ * [2):2111 + [511' (2)

It :houJld be noted that all the comiponenats used to form the awciliaries givesn
by formulas (95) are alreadi available-from the setting up of the other two
observational equations based on formilas (20).

An analytical treatment of the two methods of extension ohmws thedifference between a simulation by instruments and the lHeateurem adust-•

ment. Assuming a str'!p of gpproximateV7 vortical photokmaphe flown with2/3 overlap, the unique solution may be considered first. The control is

schematically arranged as shown in Fig-re 5 for n - 6 photographs.
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F ram Fi gu re 5 we obtain the foll.owing independetit observatuional 6qutatlUOAS

point nio. typ of control number of numblr of foru~ilas describxing
point Observational conditions of siziulatIon

equations intersection- by&at swanes
satisfied inptruýnt adjustmnt

1 A 14 ~(214) (k
2 14 1 (114) (114)

3 0 2 2 (20) (20~

14 0 2 2. (20) (20)

5 4- 2 J18) &(114) (18)
6Q, 2 (20), (20)

7 03 2(20) &(114) (20) &(914)
8 0 2 2 "(20) (20),
9 0 2 2 (20), (20)

10 3. 2: -(20)&'(114).(20)&-(914)
n2 0 2 2. <~20) (0
12 32 (20) &.(14) (2o) &()
.13 0 1 (2Q) (20)t

Ald 4  0 11(20) (20)
150 11(20) (0

a tpAbdtion shako thiat in both cases" we have 36 observational equations f or
thle et'nnaion of.ej orientation pai,4mat'~a, n being 6 in our case,.
?urt~hb -or*e, ýative pairp of rayd idthin 'eadh, pai~r of oonsecutive bundleq mat
intersect in' ord'er -to 4*AvifY, tht6do~~ ait Thus, :tf n denotes the
Iiwriber o~f photograpbs in the strI4p, w& ,need (nl *. onditiorini of iznterseotion.

Ir 6,twny-five olrdý.t030 ofý i fit' I action nu~st be, satidfiedAs' shown
in the AtAiatI±P*

In Fiur!e 6 the 36 Obsiivational'cutin r shiown

prom Pigurs; 5swe- so6 that Mivepoin s are coi'nt two photographo in.
h f, +Ih,, end "models .r4t'r onsae c'omn'on to thrs htg'h i the

AIYi Aete it the ~i Grrsp ndingAje ~ , ~ p~ icle rdta a
po ~ ~ ciat19'Rng qabiao 16ting fc, n. 1a t squre . ~ uto torO tw ahe~o 'teee~
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prooedure as per-formed on refutitution equipmrit. Corr,6poruinrl1j, the seqilece,
oftecoefficients of the unknown parameter corrections is given by thin

and' hoavy lines in the 9 matrix. It is obvious that the gonventional method
of strip trian~gulation is divided into a sequence-of independent extensioam
thus allowing for the ooi'utation of the six unluiowu elements of orientation
for each consecutive photograph separately (heavy lines). Correspondingly#
the A matrix is a sequence of diagonally arranged no-tr png raw vectors
(dots). However, such treatment wi~ll be correct onlynin-th aseo-of a uznique-
solttiot where all 'residuals are equal to zero and'. therefore, the nunrioa3
solu±tion will not, be influenced by incomiplete condxitional equations. A least
squares adjustment,, howeverj, ru',st be based on the rigorous conditioual equatiom.
designated by ciroles and thin lines in Figure 6.

Asubinatrioes (schematic) for control point commn to
Type of introl. a) two photographs b) three photographs

'aboolute3

6

3. : :
abso ~ 2'

A> aThK:1

C3

143<
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The corresponding system of observational equations can be wrtten in
analogy to formula (26) as followsi

A1  o o . . 0 'I

0 A 2  0 0 . 0 02 L 2

0. 0 A . . 0 .V3  a L3

0 0 0 0 0 i

whee* A1 .are the coefficient matrices of the rusldual vectors Vt corospond-

ix• to tho i"control points involved. It is seen from figure 6 and Figure 7-
that six different types of A t submtrices exist, dependtng upon what type
of control point is used and whether the point is oommon to two or three
photographs.

The A submatrices of the types Ias na and In.a are obviously' Identioal

with the ouriveponding expressions in formulas (25)9

It followu from formula (98) that the geometric oarditions in a strip can
we simulated by a net of conditional equations explicit in terms of the
residual vectors V * Any number of arW type of control point situated at aM
portionof the strip can be handled readily. In addition arq nufnber of
independently determined orientation parameters can be enforced in the solution
at- ar time.

To show the procedure of a strip triangulation based on a leaSt "squares
solution, let us consider a strip of 5 photographs with 2/3 overlap and a pass
point distribution as sh~wn in Figure 8.

Twelve points are common tu two photographs and I1 points are common to.
three photographs. Consequently, we have (1i2.2 18.3).xZ-156 residuals, which
are arranged in A submatrices according to Figure 7. .

49
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The nwaber of observationalý equatios is. Lwgivibyz

point no* type nrber d point no. type z1: w a
e quations eq uati

1 4 4 1 6• 6

6 o 1 :.21 7 " 3

3 2 18 3

1o ... 1 19 3

5 12 3

6 0 21 3X

7. 3 22 3

83 23 3

9 3 214 41)9"

K 10_3 25.a
1. 3 26 o

12 3 27 0 1

13' 28 o 1

114 14 29 1

15 3.30 14

U 77

"Thr ther are 77' observational e4ations for n •6.5 6 3 S0unkno"

W ith the symbol used in .Figure 7, the A and matrioe, of tte observa-'!i ,' ttonal. equations are scherat1callyI shown in Figure 9*. The A matrix consists*
df diagonally arranged A subbmtrices. The final set of noral equations

rýCan b•., formad by adding ses of partial normal equationa as outlined on pages
22 anoý23. Thus the analytical treatment of a least squares solution for a
strip 'r-iangulation ti reduced to the, problem of inverting a symnistrical r x r
matrix, 'the coefficient kaa'ix of the' Jnkncwn orientation parameters. Sincai
the general case deals wit six unkno&/• parameters for each photograph we have
for a strip of n photograp1,s, .r - 6n. q/ .u- sibility-of the prb-ipVsed
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approach to the problem of aerial triangulaticn appears, therefore,, to be
based upon the..possibility of invertirg large matrices. This problem will be
siirplified because the individual 8 mit~rioes in formila, (98) include only
co~fficients corresponding V5 the unknown parameters 'combined in the individual
vectors A*Thus the r x r m'trix of the coefficients is only partially filleds
namely, in the neighborhood of the diagonal as shownl in Figure 10.' This -fact
suggests the application Uf the relaxation technique of GaussmSeid&1, or a.
similar approach. The determination of the roots of the normial equations can
be based upon an iterative procews whiQAh taknas pla-cc as a subrouttine 10 thlin
each cytle of iteration of the general solution.

If the pass points are selected in such a way that at leau4"% relative
pontrol points are common to each section of triple overlap., those iwodelst
formed'by the coombination of photographs taken at every other camera position
are included in the/lcoziputntions, The favorable geometryý of thethus extended
base line'is otherwise obtainable only by convergeiht photographyt If we.
assuiw 2/13 overlap between,. t1e consecutive photographs (isee Figure 8), the
triangulation strip consists of a-series of sections with tripla overlap.
Consequently., as a general rulej, we will obtain about 3 times as smw observa-
tiona~l equations an 4b have, relatiw`v,:ntrmolN points. In addition to having
favorable goeome1try, we have a ro4ur4Ant number "of ,points whi ch are us ed to
distrub~ute the errors of. .6ý,iervation and therefore increase the accuracy and
reliability of the result. Photographs taken with lenses of hyper-wide angle
of view (1200), which are expected to be available in the future, should provide
the necessary econonv in a strip with 2/3 overlap.

The basl.c Idea underlying the solution presentcd .for a strip triangulation
can obviouisly be applied to the problem of a least squares solution for a,
block adjustment. Depending upon the degree of side lap, the pattern of-the
A submatrices will vary according to the change in the number of p hotographs

which have in common the images of certain control points. However., the
matrix of the final system of observational equations will again consist, of''a
sequence of diagonally arranged A, submatrices, so that the final normal
equation system ma~y be forried stepwise. It should be noted that the applica-
tion of formula (210), as explained on page 42, for the purpose of combi~ning
adjoining models can now boi used advantageouslyr because In this case the ray~
to btý,co~rrbined do not lie in or close to aL plane.'*

d. 0N01JJ:N! G IiEMAMdS

The feasibility of the presented analytical tvaxtment of a p hotograrumetri~c
evaluation problem depenis upor, the availability 'of electronic computing R

machines with large co.qpiitire, capacit, and large storage facilities. The high "
speed idth which such cotputers are nbet efr i~ltitude of arithmeti
operations suggests the practicability of iterative processes.. Therefore,, the

p least squarc7, solution is advanta~enuily based on eqjuations wtuich yield first
order dif idret~ial correct;,orz tQ a'pro;xirrete values- of the un1;non pararieter,
the red-act.ion bein6 repeated until the solution has converged to a pre-estaO!,r,ýh-<
ed accuracy 1-v&1. Tne large coliuut,-v c ara c it Prit:ki 1L fea:Ale to alC in ~\

Ji 9(
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the solution for Ute most general case, thus eliminating the need for epeotal
solutions. In addition, the overall accuracy can be increased by over-
determining tha solution through a redundant number of abservations. Arn,. type
of given information in the form of pass points "or orientation elements can
be retIily introduoed:

"?meroue hand computed examplew have been carried out for the method
described in Mhu report., At present a universal code is being prepared at.
,he Ballistio rorvarch Laboratories for the problem of orienting.inrividual
models and triai~ulatirg the spatial coordinates of individual pointo on such
models.

It is asstued ta such ' codo together with atý automatilailly rooord~m
stereooonparator will provide. a solution of muwdn precision and eoono. __.

It appears that such a solution is appiiable to al photograzmtrio problsm.
in whflich either the elements o'f orientation or the apatial corok•Ui•i-oA Ot
mmerous target points 3ust be determined. '-..

HEULMJ H. hCMUD '
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